September 25, 2020
2 min to read
命題邏輯 Logical Equivalences 邏輯等價, Rules of Inference 推理規則
命題邏輯的 Logical Equivalences 邏輯等價, Rules of Inference 推理規則
Logical Equivalences
\[\displaylines{
\begin{array}{|c|c|c|}
\hline
\text{Equivalence} & \text{Name} \\
\hline
\mathbb{\displaylines{p \wedge \top \equiv p \\
p\vee \bot \equiv p}} & \text{Identity laws}\\
\hline
\mathbb{\displaylines{p\vee \top \equiv \top \\\
p\wedge \bot \equiv \bot}} & \text{Domination laws}\\
\hline
\mathbb{\displaylines{p \vee p \equiv p\\\
p \wedge p \equiv p}} & \text{Idempotent or tautology laws}\\
\hline
\mathbb{\displaylines{\lnot (\lnot p) \equiv p}} & \text{Double negation law}\\
\hline
\mathbb{\displaylines{p \vee q \equiv q \vee p \\\
p \wedge q \equiv q \wedge p}} & \text{Commutative laws} \\
\hline
\mathbb{\displaylines{(p\vee q)\vee r\equiv p\vee (q\vee r)\\\
(p\wedge q)\wedge r\equiv p\wedge (q\wedge r)}} & \text{Associative laws}\\
\hline
\mathbb{\displaylines{p\vee (q\wedge r)\equiv (p\vee q)\wedge (p\vee r) \\\
p\wedge (q\vee r)\equiv (p\wedge q)\vee (p\wedge r)}} & \text{Distributive laws} \\
\hline
\mathbb{\displaylines{\neg (p\wedge q)\equiv \neg p\vee \neg q \\\
\neg (p\vee q)\equiv \neg p\wedge \neg q}} & \text{De Morgan's laws} \\
\hline
\mathbb{\displaylines{p\vee (p\wedge q)\equiv p\\\
p\wedge (p\vee q)\equiv p}} & \text{Absorption laws}\\
\hline
\mathbb{\displaylines{p\vee \neg p\equiv \top\\\
p\wedge \neg p\equiv \bot}} & \text{Negation laws}\\
\hline
\end{array}
}\]
Logical Equivalences Involving Conditional Statements
\[\displaylines{
\begin{aligned}
p\rightarrow q &\equiv \neg p\vee q\\\
p\rightarrow q &\equiv \neg q\rightarrow \neg p\\\
p\vee q&\equiv \neg p\rightarrow q\\\
p\wedge q&\equiv \neg (p\rightarrow \neg q)\\\
\neg (p\rightarrow q)&\equiv p\wedge \neg q\\\
(p\rightarrow q)\wedge (p\rightarrow r)&\equiv p\rightarrow (q\wedge r)\\\
(p\rightarrow q)\vee (p\rightarrow r)&\equiv p\rightarrow (q\vee r)\\\
(p\rightarrow r)\wedge (q\rightarrow r)&\equiv (p\vee q)\rightarrow r\\\
(p\rightarrow r)\vee (q\rightarrow r)&\equiv (p\wedge q)\rightarrow r
\end{aligned}
}\]
Logical Equivalences Involving Biconditional Statements
\[\displaylines{
\begin{aligned}
p\leftrightarrow q&\equiv (p\rightarrow q)\wedge (q\rightarrow p)\\\
p\leftrightarrow q&\equiv \neg p\leftrightarrow \neg q\\\
p\leftrightarrow q&\equiv (p\wedge q)\vee (\neg p\wedge \neg q)\\\
\neg (p\leftrightarrow q)&\equiv p\leftrightarrow \neg q
\end{aligned}}\]
Rules of Inference
\[\displaylines{
\begin{array} {|c|c|}\hline Rule \space of\space Inference & Name \\
\hline
\displaylines{p \\ \underline{p \rightarrow q} \\ \therefore q} & \text{Modus ponens} \\
\hline
\displaylines{\lnot q \\ \underline{p \rightarrow q} \\ \therefore \lnot p}& \text{Modus tollens} \\
\hline
\displaylines{p \rightarrow q \\ \underline{q \rightarrow r} \\ \therefore p \rightarrow r }& \text{Hypothetical syllogism} \\
\hline
\displaylines{p \vee q\\ \lnot p \\ \overline{\therefore q}} & \text{Disjunctive syllogism} \\
\hline
\displaylines{p \\ \overline{\therefore p \vee q}} & \text{Addition} \\
\hline
\displaylines{\underline{p \wedge q}\\ \therefore p }& \text{Simplification} \\
\hline
\displaylines{p\\ q\\ \overline{\therefore p \wedge q} }& \text{Conjunction} \\
\hline
\displaylines{p \vee q\\ \lnot p \vee r\\ \overline{\therefore q \vee r}} & \text{Resolution} \\ \hline
\end{array}
}\]
Rules of Inference for Quantified Statements
\[\displaylines{
\begin{array} {|c|c|}
\hline
Rule \space of \space Inference & Name \\
\hline
\displaylines{\forall x P(x) \\ \therefore P(c)}& \text{Universal instantiation} \\
\hline
\displaylines{P (c) \space for \space an \space arbitrary\space c \\ \therefore \forall x P(x)} & \text{Universal generalization} \\
\hline
\displaylines{\exists x P(x) \\\ \therefore P(x) \space for \space some \space element \space c }& \text{Existential instantiation} \\
\hline
\displaylines{P(x) \space for \space some \space element \space c\\\ \therefore \exists x P(x)} & \text{Existential generalization}\\
\hline
\end{array}
}\]
Reference
Logical equivalence - Wikipedia
Rule of inference - Wikipedia