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1.1 Propositional Logic
Negation =p, Conjunction p A q, Disjunction p V q, Exclusive or p @ q

Conditional statement p — q
p is called the hypothesis (or antecedent or premise) {RE%/Ailiz

q is called the conclusion (or consequence) #& /5 &

Biconditional statement p < q

1.3 Propositional Equivalences

Always true, tautology (EE=) Always false, contradiction(F/EX)
Neither a tautology nor contradiction, contingency(RIREZX)

Logically equivalent, p = q, if p < q is a tautology

De Morgan’s Laws

“pAg="PVTq

“(pVg)="pAN—q

1.4 Predicates and Quantifiers

Universal quantifier VvV, Existential quantification 3
Counterexample 5l

—VxP (x) = 3x —P (x)

—3xQ0(x) = Vx ~Q(x)

1.6 Rules of Inference

fin eB e g8 | ogical Equivalences #%855{&. Rules of Inference H#EIE 15 Al



https://cwksc.github.io/DiscreteMathematics_PropositionalLogic_basic/

2.1 Sets

aiselementofsetA,a € A

N = {0, 1, 2, 3,...}, the set of natural numbers BREL
Z =1{.,-2,-1,0,1, 2,..}, the set of integers B
Q= 1{plglpeZ, geZ, andq = 0, the set of rational numbers BIEEL

R, the set of real numbers B2}

C, the set of complex numbers &%}

Closed interval [a, b], open interval (a, b)

A and B are equal if and only if Vx(x € 4 <> x € B)

Set Ais subset of setB, 4 € B, Vx(x€ 4 — x€B)

AcSBandB & A thenA=B

ForeverysetS, dcSandS <SS

S is finite set, n distinct elements, n is cardinality (Z%) of |S|
Power set of S is the set of all subsets of the set S. denoted P(S)
e.g. P({0, 1, 2}) = {<, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2§}
Cartesian product (EH-R#M), 41 xB = {(a, b)|acANbeB}

Truth set, {xeD|P (x)}

2.2 Set Operations
Union A U B, Intersection A N B, Difference A — B, Complement A
|[AUB| = |A| + |[B| — |4 N B

Two sets are called disjoint if their intersection is the empty set.



2.3 Functions

[One-to-one, Injunction]

f(a) = f(b) implies that a = b for all a and b in the domain of f.
Va¥b(f(a) = f(b) > a = b), YaVb(a # b— f(a) = f(b))
[Onto, Surjection]

For every element b € B there an elementa € A with f(a) = b
Vydx(f (x) = y), where x is the domain and y is the codomain

[One-to-one correspondence, Bijection] Both one-to-one and onto

[Increasing] /' (x) < f(y), [Strictly increasing] /' (x) < ' (y)
[Decreasing] f/ (x)> f (y), [Strictly decreasing] /' (x) > f(y)
[Composition of functions] (f - g)(a) = f(g(a))

If f and g are injective/surjective, then f - g is injective/surjective.
[Identity functions] /d, (a) = a

[Inverse functions] /: 4 > B, /' :B— 4

fis injective, g°f = Id,, fis surjective, f°g = Id,

fis bijective, gof = Id, and f°g = Idy

Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a € Aand f (a) = b}.

A partial function f from set A to set B is an assignment to each element a in a subset
of A, called the domain of definition of f , of a unique element b in B. The sets A and B

are called the domain and codomain of f, respectively. We say that f is undefined for
elements in A that are not in the domain of definition of f . When the domain of

definition of f equals A, we say that f is a total function



9.1 Relations and Their Properties

Let A and B be sets. A binary relation from A to B is a subset of A x B.
A relation on a set A is a relation from A to A

[Reflexive]

(a, a) € R for every elementa € A,

Va((a, a) € R), where the universe of discourse is the set of all elements in A.
[Symmetric]

(b, a) € R whenever(a, b) € R, foralla,b € A

YaVb((a, b)e R — (b, a) € R)

[Antisymmetric]

Foralla,b € A, if (a, b) € R witha # b, then (b, a) not € R

if (@, b) € Rand (b,a) € R,thena=b

Va¥b(((a, b)e R A (b, a) € R) — (a = b))

[Transitive]

(a,b) € Rand (b,c) € R, then (a,c) € R, foralla, b, c € A.
YaVbVc(((a, b)e RA (b, c)e R) — (a, c) €R)

[Composite]

Let RisAto B and S is B to C. The composite of R and S is the relation consisting of
ordered pairs (a, c), where a € A, ¢ € C, and for which there exists an elementb € B
such that (a, b) € Rand (b, c) € S. We denote the composite of Rand Sby S - R

R = (1, 1), (1,4, 2, 3), 3, ), 3, D}
§ =11, 0),(2,0), G, 1), 3, 2), (4, 1
SeR = {(1,0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}



9.3 Representing Relations
matrix My = [m;]

1 if (ai, bj) € R,
0 if (ai, bj) ¢ R.

mi; =

R is symmetric if and only if M, = (M)

R is antisymmetric relation that m; =0 orm; = 0 wheni ¥ j

MRtLjHE = MH] W le'ﬂg and MH]ﬂRg = MH] AN M;{j.

Mgsor = Mgp © M.

_ M
Mg: = MU,

A directed graph, or digraph, consists of a set V of vertices (or nodes) together with
a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called
the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of

this edge.
Symmetric: every edge we also have the reverse edge
Antisymmetric: which is not a loop, then we don’t have the reverse edge

Transitive: if two consecutive edges, then we also have“combination”



9.5 Equivalence Relations

[Equivalence] Reflexive, symmetric, and transitive
[Equivalent] Two elements a, b related by equivalence relation, denote a ~ b
[Equivalence Class]

The set of all elements that are related to an element a of A is called the equivalence

class of a. Denoted by [a],
l[al = {s|(a, s)eR}
[Representative]

If b e [a],,then bis called a representative of this equivalence class.

9.6 Partial Orderings

[Partial ordering] Reflexive, antisymmetric, and transitive

[Partially ordered set, Poset]

Set S with partial ordering R called partially ordered set, or poset, denoted (S, R)

<= denote relation in any poset, When a and b are elements of the poset (S, <=), itis

not necessary that either a <=b or b <=a.

Elements a, b of poset (S, <=) called comparable if either a <= b or b <= a.

a and b are called incomparable, neither a <=b norb <=a

When every two elements in set are comparable, relation called total ordering

If (S, <=) is poset and every two elements of S are comparable, S is called a totally
ordered or linearly ordered set, and <= is called a total order or a linear order. A

totally ordered set also called chain.

(S, <=) is well-ordered set if it is poset that <= is a total ordering and every nonempty

subset of S has a least element.



[THE PRINCIPLE OF WELL-ORDERED INDUCTION]

S is a well-ordered set. Then P (x) is true for all x € S, if

INDUCTIVE STEP: Foreveryy € S, if P(x) true for all x € S with x <y, then P(y) true
[Lexicographic Order]

(a,, ay, ..., a,) < (b, by, ....,b,) ifa, = b, ...a, = b,, anda, <., b,

[Hasse Diagrams]

1. Remove all loops since partial ordering is reflexive, a loop (a, a) is present at
every vertex a.

2. Remove all edges (x, y) since there an element z € S such that x <z and z <x

3. Arrange each edge that initial vertex below terminal vertex

4. Remove all the arrows on the directed edges

Let (S, <=) be poset. elementy € S covers element x € S if x <y and no element z

€ S that x <z <y. The pairs (x, y) that y covers x called covering relation of (S, <=)
[Maximal] a is maximal in the poset (S, <=) if thereisnho b € S such thata<b
[Minimal] a is minimal if there is no elementb € S such thatb <a

[Greatest element] greater than every other element in poset

[Least element] less than all other elements in poset



[Upper bound]

If uis element of S that a <= u for all elements a € A, u is called upper bound of A
[Lower bound]

If | is element of S that | <= a for all elements a € A, | is called lower bound of A
[Least upper bound] Less than every other upper bound

[Greatest lower bound] Greater than every other lower bound

[Lattice] both a least upper bound and a greatest lower bound

[Topological Sorting]

Total ordering <= is compatible with partial ordering R if a <= b whenever aRb.

Constructing compatible total ordering from partial ordering called topological sorting

5.1 Mathematical Induction

Prove P(n) is true for all positive integers n, where P (n) is a propositional function
BASIS STEP: We verify that P (1) is true.

INDUCTIVE STEP: Show that conditional statement P (k) — P (k + 1) is true for all

positive integers k.
Assume that P (k) is true and show under this assumption, P (k + 1) be true
Example: Let P(n) be 1° + 2° +-+ 3 = (n(n + 1)/2)* for positive integer n
P(1): 1 = (1(1+1)2)
RHS : (1(1+1)2)* =1=LHS
So P(1) is true
Assume that P (k) is true,

P+ 2+ L+ k= (kk+ D)2



Note that P(k+ 1) is
P+2+ .+ B+ k(+1) = (k+Dk+2)2)7°
and then
P+22+ .+ + (+1)° = (k(k+ D2 + (k+1)

= K(k+1)%4 + (k+1)°
= (k+ 1)*(K*/4 + (k+1))
= (k+ D*(k +2)*/4
= ((k+ D)k +2)2)
= P(k+1)

It shows P(k+1) is true when P (k) is true

By mathematical induction, P(n) is true for all positive integers n

5.3 Recursive Definitions and Structural Induction

Define function with set of nonnegative integers domain:
BASIS STEP: Specify value of function at zero

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at

smaller integers
It is called recursive or inductive definition

[Arithmetic sequence] a, = a, | +d a, = a, + nd

n—1

[Geometric sequence] a, = ca a, =c" a,

n—1

[Compound interest] P, =7"P,
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8.2 Solving Linear Recurrence Relations

Linear homogeneous recurrence relation of degree k with constant coefficients

a, = Ca, ; *t ca,, t...+tcoa,,

n—1
where ¢, ¢,, ..., ¢, are real numbers with ¢, # 0
[Linear] «, power by 1

[Homogeneous] all arguments multiple by some qa,
[Degree k] a, depends on the kth preceding term
[Constant coefficients] all coefficients are constants

[Characteristic equation]

k_ okl k2 =
rt—cr et r—c, =0

[Characteristic roots] roots of characteristic equation
Solution of degree two:

dp = €18y T Gty

2 .
re—cir—c, =0, we haver,, r, (r, #r,)

n
2

ap = ari tayr
Solution of degree two with same r root:

2 .
re—cyr—c, =0, we haver,,

N

— n
Ay = a;r, T a,nr,

Solution of degree k with distinct r roots:

a, = ca,; +ca,, t...+tca,,

k_ ookl s
r“—cr .—c, =0, wehaver,, r,, ..., ri(distinct roots)

)

an = ayry tarl . tar)
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General solution of linear homogeneous recurrence relations with constant

coefficients:

r*—c /¥ — .. — ¢, =0, we have t distinct roots

the root multiply by m, m,, ..., m, times

m +tmy+..+m =k

an=(apgta nt..+ al’ml_lnmfl)r’f t(ayytaynt..+ az’mz_lnmfl)r’; +
t .ot (@gytant..+ at’ml_lnmfl)r’;

where a;.arel <i<t and0<j<m;—1

t m~1
— 1\ 41
ap = Z( Z aiJn])r[
=0 j=0
Nonhomogeneous linear recurrence relation with constant coefficients
a, = ca,, Tt ca,,+...+ca, , TF0n)

{aff’)} is a particular solution of the nonhomogeneous linear recurrence relation with

constant coefficients

{aflh)} is a solution of the associated homogeneous recurrence relation
a, = a,(,,p) + a,(f’)

Format of F(n): F(n) = (b’ +b,_ 0" + ...+ bn+b,)s"

When s is not a root of the characteristic equation of the associated linear

homogeneous recurrence relation, there is a particular solution of the form

a? =’ +p, 0"+ .+ pntpy)s”

When s is a root of this characteristic equation and its multiplicity is m, there is a

particular solution of the form
@ = n"(pn' + pyn™ + ot pynt po)s”
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6.1 The Basics of Counting

4, is set of ways

There are ny, n,, ..., n,, nis number of ways, k is number of task
[Product rule] |4, x 4, x ... x A, = |4,| |4,| ... |4 =nn,...n,
[Sumrule] 4, U4, U...U4,| = |4 |+|4,|+..+|4,| = n +ny+..+n,
[Subtraction Rule] |4, U4, |=|4,[+|4,]—|4, N4, ]

[Division Rule] If finite set A is the union of n pairwise disjoint subsets each with d

elements, thenn =|A|/d

Counting problems can solved by tree diagrams
[Pigeonhole principle]

Assume that

pigeons: n + 1 objects are placed into
pigeonholes: n boxes

At least one box contains two or more objects

6.3 Permutations and Combinations

P(l’l, 7") - (n'f;,).

C(n, r) = !

(n—r)'r!
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6.4 Binomial Coefficients and Identities

(z+y)" = i (:) 2"y
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