UVa 11343 Isolated Segments
https://onlinejudge.org/index.php?option=onlinejudge&Itemid=8&page=show_problem&problem=2318
給出一堆線的頭尾 x y 座標
求沒有與其他線段相交的線的數目
用 cross product 去找出點在線的左邊還是右邊
然後檢查 點 剛好在線上面的情況
發現碰撞後用 disjointset union,答案等於總數減去 union 過的數目 + 1
#include <iostream>
#include <algorithm>
#include <cmath>
constexpr int maxSize_DistjointSet = 101;
int count = 0;
struct DistjointSet {
int disjointSet[maxSize_DistjointSet]{};
DistjointSet() {
for (int i = 0; i < maxSize_DistjointSet; i++) {
disjointSet[i] = -1;
}
}
int findParent(int id) {
if (disjointSet[id] == -1) return id;
int parent = findParent(disjointSet[id]);
disjointSet[id] = parent;
return parent;
}
void unionSet(int a, int b) {
int aParent = findParent(a);
int bParent = findParent(b);
if (aParent == bParent) return;
disjointSet[bParent] = aParent;
count++;
}
};
struct Point {
int x, y;
Point() {}
Point(int x, int y) {
this->x = x;
this->y = y;
}
};
struct Vector {
int x, y;
Vector(Point a, Point b) {
x = b.x - a.x;
y = b.y - a.y;
}
};
// Dot Product //
// a . b = |a| |b| cos x
// a . b = a b^T = a.x * b.x + a.y * b.y
//
// cos 90 = 0, so dot product will be zero
// if angle < 90, dot product > 0
// if angle = 90, dot product = 0
// if angle > 90, dot product < 0
int dotProduct(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
}
// Cross product //
// a x b = |a| |b| sin x
// | a.x a.y |
// a x b = | b.x b.y | = a.x * b.y - a.y * b.x
//
// sin 0 / 180 = 0, so cross product will be zero
// if cross product > 0, a to b is anticlockwise
// if cross product = 0, a to b is parallel
// if cross product < 0, a to b is counterclockwise
int crossProduct(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
}
int crossProduct(Point a, Point b, Point c) {
return crossProduct(Vector(a, b), Vector(b, c));
}
// a^2 + b^2 = c^2
double length(Vector v) {
return sqrt(v.x * v.x + v.y * v.y);
}
int lengthPower2(Vector v) {
return v.x * v.x + v.y * v.y;
}
// a . b = |a| |b| cos x
// cos x = (a . b) / (|a| |b|)
// x = cos-1 ( (a . b) / (|a| |b|) )
double getAngleByDotProduct(Vector v1, Vector v2 ) {
return acos( dotProduct(v1, v2) / (length(v1) * length(v2)) );
}
// a x b = |a| |b| sin x
// sin x = (a x b) / (|a| |b|)
// x = sin-1 ( (a x b) / (|a| |b|) )
double getAngleByCrossProduct(Vector v1, Vector v2) {
return asin( crossProduct(v1, v2) / (length(v1) * length(v2)) );
}
bool isAnticlockwise_a_b_c(Point a, Point b, Point c) {
return crossProduct(Vector(a, b), Vector(b, c)) > 0;
}
double distance(Point a, Point b) {
return std::sqrt((b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y));
}
double distancePower2(Point a, Point b) {
return (b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y);
}
struct Segment {
Point start;
Point end;
Segment(Point start, Point end) {
this->start = start;
this->end = end;
}
bool pointInsideXRange(Point p) {
return
p.x >= std::min(start.x, end.x) &&
p.x <= std::max(start.x, end.x);
}
bool pointInsideYRange(Point p) {
return
p.y >= std::min(start.y, end.y) &&
p.y <= std::max(start.y, end.y);
}
};
bool isCollideWhenParallel(Segment s, Point p) {
return s.pointInsideXRange(p) && s.pointInsideYRange(p);
}
bool intersect(Segment s1, Segment s2) {
float c1 = crossProduct(s1.start, s1.end, s2.start);
float c2 = crossProduct(s1.start, s1.end, s2.end);
float c3 = crossProduct(s2.start, s2.end, s1.start);
float c4 = crossProduct(s2.start, s2.end, s1.end);
bool isAnticlockwise_s1_s2start = c1 > 0;
bool isAnticlockwise_s1_s2end = c2 > 0;
bool isAnticlockwise_s2_s1start = c3 > 0;
bool isAnticlockwise_s2_s1end = c4 > 0;
if( (isAnticlockwise_s1_s2start != isAnticlockwise_s1_s2end) &&
(isAnticlockwise_s2_s1start != isAnticlockwise_s2_s1end) ) {
return true;
}
if(c1 == 0 && isCollideWhenParallel(s1, s2.start)) return true;
if(c2 == 0 && isCollideWhenParallel(s1, s2.end)) return true;
if(c3 == 0 && isCollideWhenParallel(s2, s1.start)) return true;
if(c4 == 0 && isCollideWhenParallel(s2, s1.end)) return true;
return false;
}