MA2185 Discrete Mathematics

1.1 Propositional Logic	2
1.3 Propositional Equivalences	2
1.4 Predicates and Quantifiers	2
1.6 Rules of Inference	2
2.1 Sets	3
2.2 Set Operations	3
2.3 Functions	4
9.1 Relations and Their Properties	5
9.3 Representing Relations	6
9.5 Equivalence Relations	7
9.6 Partial Orderings	7
5.1 Mathematical Induction	9
5.3 Recursive Definitions and Structural Induction	10
8.2 Solving Linear Recurrence Relations	11
6.1 The Basics of Counting	14
6.3 Permutations and Combinations	14
6.4 Binomial Coefficients and Identities	15

1.1 Propositional Logic

Negation ¬p, Conjunction p \land q, Disjunction p \lor q, Exclusive or p \oplus q

Conditional statement $p \rightarrow q$

p is called the **hypothesis** (or antecedent or premise) 假設/前提 g is called the **conclusion** (or consequence) 結論/結果

Biconditional statement $\textbf{p} \leftrightarrow \textbf{q}$

1.3 Propositional Equivalences

Always true, tautology (重言式) Always false, contradiction(矛盾式)

Neither a tautology nor contradiction, contingency(可能式)

Logically equivalent, $p \equiv q$, if $p \leftrightarrow q$ is a tautology

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

1.4 Predicates and Quantifiers

Universal quantifier ∀, Existential quantification ∃

Counterexample 反例

 $\neg \forall x P \ (x) \equiv \exists x \ \neg P \ (x)$

 $\neg \exists x Q(x) \equiv \forall x \neg Q(x)$

1.6 Rules of Inference

<u>命題邏輯 Logical Equivalences 邏輯等價, Rules of Inference 推理規則</u>

2.1 Sets

a is element of set A, $a \in A$

- $N = \{0, 1, 2, 3, ...\},$ the set of natural numbers 自然數
- $Z = \{..., -2, -1, 0, 1, 2, ...\}, the set of integers 整數$
- $Q = \{p/q \mid p \in Z, q \in Z, and q = 0\}, the set of rational numbers 有理數$
- R, the set of real numbers 實數
- C, the set of complex numbers 虛數

Closed interval [a, b], open interval (a, b)

A and B are **equal** if and only if $\forall x (x \in A \leftrightarrow x \in B)$

Set A is **subset** of set B, $A \subseteq B$, $\forall x (x \in A \rightarrow x \in B)$

 $A \subseteq B$ and $B \subseteq A$, then A = B

For every set S, $\varnothing \subseteq S$ and $S \subseteq S$

S is finite set, n distinct elements, n is cardinality (基數) of |S|

Power set of S is the set of all subsets of the set S. denoted P(S)

e.g. $P(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$

Cartesian product (笛卡爾積), $A \times B = \{(a, b) | a \in A \land b \in B\}$

Truth set, $\{x \in D \mid P(x)\}$

2.2 Set Operations

Union A U B, Intersection A \cap B, Difference A – B, Complement \overline{A}

 $|A \cup B| = |A| + |B| - |A \cap B|$

Two sets are called disjoint if their intersection is the empty set.

2.3 Functions

[One-to-one, Injunction]

f(a) = f(b) implies that a = b for all a and b in the domain of f.

 $\forall a \forall b (f(a) = f(b) \rightarrow a = b), \ \forall a \forall b (a \neq b \rightarrow f(a) = f(b))$

[Onto, Surjection]

For every element $b \in B$ there an element $a \in A$ with f(a) = b

 $\forall y \exists x (f(x) = y)$, where x is the domain and y is the codomain

[One-to-one correspondence, Bijection] Both one-to-one and onto

[Increasing] $f(x) \le f(y)$, [Strictly increasing] $f(x) \le f(y)$

[Decreasing] $f(x) \ge f(y)$, [Strictly decreasing] f(x) > f(y)

[Composition of functions] $(f \circ g)(a) = f(g(a))$

If f and g are injective/surjective, then f o g is injective/surjective.

[Identity functions] $Id_A(a) = a$

[Inverse functions] $f : A \to B, f^{-1} : B \to A$

f is injective, $g \circ f = Id_A$, f is surjective, $f \circ g = Id_B$

f is bijective, $g \circ f = Id_A$ and $f \circ g = Id_B$

Let f be a function from the set A to the set B. The **graph** of the function f is the set of ordered pairs $\{(a, b) \mid a \in A \text{ and } f(a) = b\}$.

A **partial function** f from set A to set B is an assignment to each element a in a subset of A, called the domain of definition of f, of a unique element b in B. The sets A and B are called the **domain** and **codomain** of f, respectively. We say that f is undefined for elements in A that are not in the domain of definition of f. When the domain of definition of f equals A, we say that f is a **total function**

9.1 Relations and Their Properties

Let A and B be sets. A **binary relation** from A to B is a subset of A × B.

A relation on a set A is a relation from A to A

[Reflexive]

 $(a, a) \in R$ for every element $a \in A$,

 $\forall a((a, a) \in R)$, where the universe of discourse is the set of all elements in A.

[Symmetric]

 $(b, a) \in R$ whenever(a, b) $\in R$, for all a, b $\in A$

 $\forall a \forall b((a, b) \in R \to (b, a) \in R)$

[Antisymmetric]

For all a, b \in A, if (a, b) \in R with a \neq b, then (b, a) not \in R

if $(a, b) \in R$ and $(b, a) \in R$, then a = b

 $\forall a \forall b(((a, b) \in R \land (b, a) \in R) \rightarrow (a = b))$

[Transitive]

 $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

 $\forall a \forall b \forall c(((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R)$

[Composite]

Let R is A to B and S is B to C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that (a, b) \in R and (b, c) \in S. We denote the composite of R and S by S \circ R

 $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$ $S \circ R = \{(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)\}$

9.3 Representing Relations

matrix $M_R = [m_{ij}]$ $m_{ij} = \begin{cases} 1 \text{ if } (a_i, b_j) \in R, \\ 0 \text{ if } (a_i, b_j) \notin R. \end{cases}$

R is symmetric if and only if $M_R = (M_R)^t$

R is antisymmetric relation that $m_{ij} = 0$ or $m_{ji} = 0$ when $i \neq j$

 $\mathbf{M}_{R_1\cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2} \quad \text{and} \quad \mathbf{M}_{R_1\cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2}.$

 $\mathbf{M}_{S \circ R} = \mathbf{M}_R \odot \mathbf{M}_S.$

$$\mathbf{M}_{R^n}=\mathbf{M}_R^{[n]},$$

A **directed graph**, or **digraph**, consists of a set V of **vertices** (or **nodes**) together with a set E of ordered pairs of elements of V called **edges** (or **arcs**). The vertex a is called the **initial vertex** of the edge (a, b), and the vertex b is called the **terminal vertex** of this edge.

Symmetric: every edge we also have the reverse edge

Antisymmetric: which is not a loop, then we don't have the reverse edge

Transitive: if two consecutive edges, then we also have "combination"

9.5 Equivalence Relations

[Equivalence] Reflexive, symmetric, and transitive

[Equivalent] Two elements a, b related by equivalence relation, denote a ~ b

[Equivalence Class]

The set of all elements that are related to an element a of A is called the equivalence class of a. Denoted by $[a]_R$

 $[a]_{R} = \{ s \mid (a, s) \in R \}$

[Representative]

If $b \in [a]_R$, then b is called a representative of this equivalence class.

9.6 Partial Orderings

[Partial ordering] Reflexive, antisymmetric, and transitive

[Partially ordered set, Poset]

Set S with partial ordering R called partially ordered set, or poset, denoted (S, R)

<= denote relation in any poset, When a and b are elements of the poset (S, <=), it is not necessary that either a <= b or b <= a.

Elements a, b of poset (S, <=) called **comparable** if either a <= b or b <= a.

a and b are called **incomparable**, neither a <= b nor b <= a

When every two elements in set are comparable, relation called total ordering

If (S, <=) is poset and every two elements of S are comparable, S is called a **totally ordered** or **linearly ordered set**, and <= is called a **total order** or a **linear order**. A totally ordered set also called **chain**.

(S, <=) is **well-ordered set** if it is poset that <= is a total ordering and every nonempty subset of S has a least element.

[THE PRINCIPLE OF WELL-ORDERED INDUCTION]

S is a well-ordered set. Then P (x) is true for all $x \in S$, if

INDUCTIVE STEP: For every $y \in S$, if P(x) true for all $x \in S$ with x < y, then P(y) true

[Lexicographic Order]

 $(a_1, a_2, ..., a_n) \prec (b_1, b_2, ..., b_n)$ if $a_1 = b_1 ... a_n = b_n$, and $a_{i+1} \prec_{i+1} b_{i+1}$

[Hasse Diagrams]

- 1. Remove all loops since partial ordering is reflexive, a loop (a, a) is present at every vertex a.
- 2. Remove all edges (x, y) since there an element $z \in S$ such that $x \le z$ and $z \le x$
- 3. Arrange each edge that initial vertex below terminal vertex
- 4. Remove all the arrows on the directed edges

Let (S, <=) be poset. element $y \in S$ covers element $x \in S$ if x < y and no element $z \in S$ that x < z < y. The pairs (x, y) that y covers x called covering relation of (S, <=)

[Maximal] a is maximal in the poset (S, \leq =) if there is no b \in S such that a \leq b

[Minimal] a is minimal if there is no element $b \in S$ such that b < a

[Greatest element] greater than every other element in poset

[Least element] less than all other elements in poset

[Upper bound]

If u is element of S that a <= u for all elements $a \in A$, u is called upper bound of A

[Lower bound]

If I is element of S that I <= a for all elements a ∈ A, I is called lower bound of A

[Least upper bound] Less than every other upper bound

[Greatest lower bound] Greater than every other lower bound

[Lattice] both a least upper bound and a greatest lower bound

[Topological Sorting]

Total ordering \leq is **compatible** with partial ordering R if a \leq b whenever aRb.

Constructing compatible total ordering from partial ordering called topological sorting

5.1 Mathematical Induction

Prove P(n) is true for all positive integers n, where P (n) is a propositional function

BASIS STEP: We verify that P (1) is true.

INDUCTIVE STEP: Show that conditional statement $P(k) \rightarrow P(k + 1)$ is true for all positive integers k.

Assume that P (k) is true and show under this assumption, P (k + 1) be true

Example: Let P(n) be $1^3 + 2^3 + \dots + n^3 = (n(n + 1)/2)^2$ for positive integer n

$$P(1): 1 = (1(1+1)/2)^2$$

RHS: $(1(1+1)/2)^2 = 1 = LHS$

So P(1) is true

Assume that P(k) is true,

$$1^3 + 2^3 + ... + k^3 = (k(k+1)/2)^2$$

Note that P(k+1) is

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = ((k+1)(k+2)/2)^{2}$$

and then

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = (k(k+1)/2)^{2} + (k+1)^{3}$$
$$= k^{2}(k+1)^{2}/4 + (k+1)^{3}$$
$$= (k+1)^{2}(k^{2}/4 + (k+1))$$
$$= (k+1)^{2}(k+2)^{2}/4$$
$$= ((k+1)(k+2)/2)^{2}$$
$$= P(k+1)$$

It shows P(k+1) is true when P(k) is true

By mathematical induction, P(n) is true for all positive integers n

5.3 Recursive Definitions and Structural Induction

Define function with set of nonnegative integers domain:

BASIS STEP: Specify value of function at zero

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smaller integers

It is called recursive or inductive definition

[Arithmetic sequence] $a_n = a_{n-1} + d$ $a_n = a_0 + nd$

[Geometric sequence] $a_n = c a_{n-1}$ $a_n = c^n a_0$

[Compound interest] $P_n = r^n P_0$

8.2 Solving Linear Recurrence Relations

Linear homogeneous recurrence relation of degree k with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers with $c_k \neq 0$

[Linear] a_k power by 1

[Homogeneous] all arguments multiple by some a_k

[Degree k] a_n depends on the kth preceding term

[Constant coefficients] all coefficients are constants

[Characteristic equation]

 $r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} \dots c_{k-1}r - c_{k} = 0$

[Characteristic roots] roots of characteristic equation

Solution of degree two:

$$a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2}$$

$$r^{2} - c_{1}r - c_{2} = 0, \text{ we have } r_{1}, r_{2} (r_{1} \neq r_{2})$$

$$a_{n} = a_{1}r_{1}^{n} + a_{2}r_{2}^{n}$$

Solution of degree two with same r root:

$$r^2 - c_1 r - c_2 = 0$$
, we have r_0

$$a_n = a_1 r_0^n + a_2 n r_0^n$$

Solution of degree k with distinct r roots:

$$a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2} + \dots + c_{k}a_{n-k}$$

$$r^{k} - c_{1}r^{k-1} - \dots - c_{k} = 0, \text{ we have } r_{1}, r_{2}, \dots, r_{k}(\text{distinct roots})$$

$$a_{n} = a_{1}r_{1}^{n} + a_{n}r_{2}^{n} + \dots + a_{k}r_{k}^{n}$$

General solution of linear homogeneous recurrence relations with constant coefficients:

 $r^k - c_1 r^{k-1} - \dots - c_k = 0$, we have t distinct roots

the root multiply by $m_1, m_2, ..., m_t$ times

$$m_{1} + m_{2} + \dots + m_{t} = k$$

$$a_{n} = (a_{1,0} + a_{1,1}n + \dots + a_{1,m_{1}-1}n^{m_{1}-1})r_{1}^{n} + (a_{2,0} + a_{2,1}n + \dots + a_{2,m_{2}-1}n^{m_{2}-1})r_{2}^{n} + \dots + (a_{t,0} + a_{t,1}n + \dots + a_{t,m_{t}-1}n^{m_{t}-1})r_{t}^{n}$$

where $a_{i,j}$ are $1 \le i \le t$ and $0 \le j \le m_j - 1$

$$a_n = \sum_{i=0}^t (\sum_{j=0}^{m_t - 1} a_{i,j} n^j) r_t^n$$

Nonhomogeneous linear recurrence relation with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n)$$

 $\{a_n^{(p)}\}\$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

$$\{a_n^{(h)}\}$$
 is a solution of the associated homogeneous recurrence relation
 $a_n = a_n^{(p)} + a_n^{(h)}$

Format of F(n): $F(n) = (b_t n^t + b_{t-1} n^{t-1} + ... + b_1 n + b_0) s^n$

When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

$$a_n^{(p)} = (p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$$

When s is a root of this characteristic equation and its multiplicity is m, there is a particular solution of the form

$$a_n^{(p)} = n^m (p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$$

6.1 The Basics of Counting

 A_k is set of ways

There are $n_1, n_2, ..., n_k$, n is number of ways, k is number of task

[Product rule] $|A_1 \times A_2 \times ... \times A_k| = |A_1| |A_2| ... |A_k| = n_1 n_2 ... n_k$

[Sum rule] $|A_1 \cup A_2 \cup ... \cup A_k| = |A_1| + |A_2| + ... + |A_k| = n_1 + n_2 + ... + n_k$

[Subtraction Rule] $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$

[Division Rule] If finite set A is the union of n pairwise disjoint subsets each with d elements, then n = |A| / d

Counting problems can solved by tree diagrams

[Pigeonhole principle]

Assume that

pigeons: n + 1 objects are placed into

pigeonholes: n boxes

At least one box contains two or more objects

6.3 Permutations and Combinations

 $P(n, r) = \frac{n!}{(n-r)!}$ $C(n, r) = \frac{n!}{(n-r)!r!}$ $\binom{n}{r} = \binom{n}{n-r}$

6.4 Binomial Coefficients and Identities

$$(x+y)^n = \sum_{k=0}^n inom{n}{k} x^{n-k} y^k$$

$$\sum_{k=0}^n inom{n}{k} = 2^n$$

$$\sum_{j=0}^n (-1)^j {n \choose j} = 0$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$