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1.1 Propositional Logic 

Negation ¬p, Conjunction p ∧ q, Disjunction p ∨ q, Exclusive or p ⊕ q 

Conditional statement p → q  
p is called the hypothesis (or antecedent or premise)  假設/前提 

q is called the conclusion (or consequence) 結論/結果 

Biconditional statement p ↔ q 

1.3 Propositional Equivalences 

Always true, tautology (重言式)  Always false, contradiction(矛盾式) 

Neither a tautology nor contradiction, contingency(可能式) 

Logically equivalent, p ≡ q, if p ↔ q is a tautology 

De Morgan’s Laws 

(p ∧ q) ≡ ¬p ∨ ¬q  ¬  

(p ∨ q) ≡ ¬p ∧ ¬q  ¬  

1.4 Predicates and Quantifiers 

Universal quantifier ∀,  Existential quantification ∃ 

Counterexample 反例 

∀xP  (x) ≡ ∃x ¬P  (x)  ¬  

∃xQ(x) ≡ ∀x ¬Q(x)  ¬  

1.6 Rules of Inference 

命題邏輯 Logical Equivalences 邏輯等價, Rules of Inference 推理規則  
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2.1 Sets 

a is element of set A, a ∈ A 

自然數 {0, 1, 2, 3, ..}, the set of  natural numbers N =     .   

整數 {..., −2, −1, 0, 1, 2, ..}, the set of  integersZ =       .   

有理數 {p/q | p ∈ Z, q ∈ Z, and q 0}, the set of  rational numbers  Q =    =    

實數, the set of  real numbers R   

虛數, the set of  complex numbersC   

Closed interval , open interval a, b][  a, b)(   

A and B are equal if and only if x(x ∈ A ↔ x ∈ B)  ∀  

Set A is subset of set B,  ⊆ B, ∀x(x ∈ A → x ∈ B)  A   

A ⊆ B and B ⊆ A, then A = B 

For every set S,  ⊆ S and S ⊆ S  ∅  

S is finite set, n distinct elements, n is cardinality (基數) of |S| 

Power set of S is the set of all subsets of the set S. denoted P(S) 

e.g. ({0, 1, 2}) {∅, 0}, 1}, 2}, 0, 1}, 0, 2}, 1, 2}, 0, 1, 2}}  P   =  { { { {  {  {  {    

Cartesian product (笛卡爾積),  × B {(a, b) | a ∈ A ∧ b ∈ B}  A =    

Truth set, x ∈ D | P  (x)}  {  

2.2 Set Operations 

Union A ∪ B,  Intersection A ∩ B, Difference A − B, Complement A  

A ∪ B| |A| |B| |A ∩ B|  | =  +  −   

Two sets are called disjoint if their intersection is the empty set.  
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2.3 Functions 

[One-to-one, Injunction] 

 implies that a = b for all a and b in the domain of f. (a) f  (b)f =   

a∀b( f (a) f (b) → a b),  ∀a∀b( a = b → f (a) f (b) )  ∀ =  =   /  =    

[Onto, Surjection] 

For every element b ∈ B there an element a ∈ A with  (a) bf =   

,  where x is the domain and y is the codomainy∃x(f  (x) y)  ∀ =   

[One-to-one correspondence, Bijection] Both one-to-one and onto 

[Increasing] , [Strictly increasing]  (x) ≤  f  (y)f  (x) f  (y)f <   

[Decreasing] , [Strictly decreasing]  (x) ≥  f  (y)f  (x) f  (y)f >   

[Composition of functions] f  ◦ g)(a) f (g(a))( =   

If f and g are injective/surjective, then f ◦ g is injective/surjective.  

[Identity functions] d (a) aI A =   

[Inverse functions] ,  f   → Af : A → B  −1 : B  

f is injective, ,  f is surjective,  ◦ f  Idg =  A  ◦ g Idf =  B  

f is bijective,  ◦ f  Id   and  f  ◦ g Id  g =  A =  B  

Let f be a function from the set A to the set B. The graph of the function f is the set of 

ordered pairs {(a, b) | a ∈ A and f (a) = b}. 

A partial function f from set A to set B is an assignment to each element a in a subset 

of A, called the domain of definition of f , of a unique element b in B. The sets A and B 

are called the domain and codomain of f , respectively. We say that f is undefined for 

elements in A that are not in the domain of definition of f . When the domain of 

definition of f equals A, we say that f is a total function  
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9.1 Relations and Their Properties 

Let A and B be sets. A binary relation from A to B is a subset of A × B. 

A relation on a set A is a relation from A to A 

[Reflexive] 

(a, a) ∈ R for every element a ∈ A,  

, where the universe of discourse is the set of all elements in A.a((a, a) ∈ R)  ∀   

[Symmetric] 

 whenever(a, b) ∈ R, for all a, b ∈ Ab, a) ∈ R  (   

a∀b((a, b) ∈ R → (b, a) ∈ R)  ∀    

[Antisymmetric] 

For all a, b ∈ A, if (a, b) ∈ R  with a ≠ b, then (b, a) not ∈ R 

if (a, b) ∈ R and (b, a) ∈ R, then a = b  

a∀b(((a, b) ∈ R ∧ (b, a) ∈ R) → (a b))  ∀   =   

[Transitive] 

(a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A. 

a∀b∀c(((a, b) ∈ R ∧ (b, c) ∈ R) → (a, c) ∈ R)  ∀     

[Composite] 

Let R is A to B and S is B to C. The composite of R and S is the relation consisting of 

ordered pairs (a, c), where a ∈ A, c ∈ C, and for which there exists an element b ∈ B 

such that (a, b) ∈ R and (b, c) ∈ S. We denote the composite of R and S by S ◦ R 

 {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)}R =            

 {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}S =            

 ◦ R {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}S =              

5 



9.3 Representing Relations 

matrix  [m ]MR =  ij   

 

R is symmetric if and only if  (M )MR =  R
t  

R is antisymmetric relation that  or m  0 when i = jmij = 0 ji =  /    

 

 

 

A directed graph, or digraph, consists of a set V of vertices (or nodes) together with 

a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called 

the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of 

this edge. 

Symmetric: every edge we also have the reverse edge 

Antisymmetric: which is not a loop, then we don’t have the reverse edge 

Transitive: if two consecutive edges, then we also have“combination” 
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9.5 Equivalence Relations 

[Equivalence] Reflexive, symmetric, and transitive 

[Equivalent] Two elements a, b related by equivalence relation, denote a ∼ b  

[Equivalence Class] 

The set of all elements that are related to an element a of A is called the equivalence 

class of a. Denoted by a][ R  

a]  { s | (a, s) ∈ R }  [ R =    

[Representative] 

If , then b is called a representative of this equivalence class. ∈ [a]  b R   

9.6 Partial Orderings 

[Partial ordering] Reflexive, antisymmetric, and transitive 

[Partially ordered set, Poset] 

Set S with partial ordering R called partially ordered set, or poset, denoted (S, R) 

≺= denote relation in any poset, When a and b are elements of the poset (S, ≺=), it is 

not necessary that either a ≺= b or b ≺= a. 

Elements a, b of poset (S, ≺=) called comparable if either a ≺= b or b ≺= a.  

a and b are called incomparable, neither a ≺= b nor b ≺= a 

When every two elements in set are comparable, relation called total ordering 

If (S, ≺=) is poset and every two elements of S are comparable, S is called a totally 
ordered or linearly ordered set, and ≺= is called a total order or a linear order. A 

totally ordered set also called chain. 

(S, ≺=) is well-ordered set if it is poset that ≺= is a total ordering and every nonempty 

subset of S has a least element.  
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[THE PRINCIPLE OF WELL-ORDERED INDUCTION] 

S is a well-ordered set. Then P (x) is true for all x ∈ S, if 

INDUCTIVE STEP: For every y ∈ S, if P(x) true for all x ∈ S with x ≺ y, then P(y) true 

[Lexicographic Order] 

a , a , ..., a ) ≺ (b , b , ..., )  if  a b  ... a  b , and a  ≺  b   ( 1  2   n 1  2  bn 1 =  1 n =  n  i+1 i+1 i+1  

[Hasse Diagrams] 

1. Remove all loops since partial ordering is reflexive, a loop (a, a) is present at 

every vertex a.  

2. Remove all edges (x, y) since there an element z ∈ S such that x ≺ z and z ≺ x 

3. Arrange each edge that initial vertex below terminal vertex  

4. Remove all the arrows on the directed edges 

Let (S, ≺=) be poset. element y ∈ S covers element x ∈ S if x ≺ y and no element z 

∈ S that x ≺ z ≺ y. The pairs (x, y) that y covers x called covering relation of (S, ≺=) 

[Maximal] a is maximal in the poset (S, ≺=) if there is no b ∈ S such that a ≺ b 

[Minimal] a is minimal if there is no element b ∈ S such that b ≺ a 

[Greatest element] greater than every other element in poset 

[Least element] less than all other elements in poset 
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[Upper bound] 

If u is element of S that a ≺= u for all elements a ∈ A, u is called upper bound of A 

[Lower bound] 

If l is element of S that l ≺= a for all elements a ∈ A, l is called lower bound of A 

[Least upper bound] Less than every other upper bound 

[Greatest lower bound] Greater than every other lower bound 

[Lattice] both a least upper bound and a greatest lower bound 

[Topological Sorting] 

Total ordering ≺= is compatible with partial ordering R if a ≺= b whenever aRb. 

Constructing compatible total ordering from partial ordering called topological sorting 

5.1 Mathematical Induction 

Prove P(n) is true for all positive integers n, where P (n) is a propositional function 

BASIS STEP: We verify that P (1) is true.  

INDUCTIVE STEP: Show that conditional statement P (k) → P (k + 1) is true for all 

positive integers k. 

Assume that P (k) is true and show under this assumption, P (k + 1) be true 

Example: Let  be  for positive integer n(n)P  2  ·· n  (n(n 1)/2)13 +  3 + · +  3 =  +  2  

(1) 1 (1(1 )/2)P :  =  + 1 2  

HS 1(1 )/2) HSR : ( + 1 2 = 1 = L  

So  is true(1)P  

Assume that  is true,(k)  P   

 2  ... k  (k(k )/2)13 +  3 +  +  3 =  + 1 2  
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Note that  is(k )  P + 1   

 2  ... k (k )  ((k )(k )/2)  13 +  3 +  +  3 +  + 1 3 =  + 1 + 2 2  

and then 

 2  ... k  (k )  (k(k )/2)  (k )   13 +  3 +  +  3 +  + 1 3 =  + 1 2 +  + 1 3  

                                                                              k (k ) /4 (k )  =  2 + 1 2 +  + 1 3  

                                                                              (k ) (k /4 (k ))  =  + 1 2 2 +  + 1  

                                                                              (k ) (k ) /4  =  + 1 2 + 2 2  

                                                                              ((k )(k )/2)  =  + 1 + 2 2  

                                                                              P (k )  =  + 1  

It shows  is true when  is true(k )  P + 1 (k)  P  

By mathematical induction,  is true for all positive integers n(n)  P  

5.3 Recursive Definitions and Structural Induction 

Define function with set of nonnegative integers domain:  

BASIS STEP: Specify value of function at zero 

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at 

smaller integers 

It is called recursive or inductive definition 

[Arithmetic sequence]       a  dan =  n−1 +   a  ndan =  0 +   

[Geometric sequence]             c aan =  n−1  aan = cn 0  

[Compound interest]    PP n = rn 0   
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8.2 Solving Linear Recurrence Relations 

Linear homogeneous recurrence relation of degree k with constant coefficients 

 c a  c a  . . . c  aan =  1 n−1 +  2 n−2 +  +  k n−k  

where are real numbers with , c , . . . , c  c1  2   k =ck / 0  

[Linear]   power by 1ak  

[Homogeneous]  all arguments multiple by some ak  

[Degree k]  depends on the kth preceding terman  

[Constant coefficients] all coefficients are constants 

[Characteristic equation] 

r r ... c rrk − c1
k−1 − c2

k−2
k−1 − ck = 0  

[Characteristic roots] roots of characteristic equation 

Solution of degree two: 

 c a  c aan =  1 n−1 +  2 n−2  

r , we have r , r  (r = )r2 − c1 − c2 = 0  1  2 1 / r2  

r ran = a1
n
1 + a2

n
2  

Solution of degree two with same r root: 

r , we have rr2 − c1 − c2 = 0  0  

r nran = a1
n
0 + a2

n
0  

Solution of degree k with distinct r roots: 

 c a  c a  . . . c  aan =  1 n−1 +  2 n−2 +  +  k n−k  

r .. , we have r , r , ..., r (distinct roots)rk − c1
k−1 − . − ck = 0  1  2   k  

r r .. ran = a1
n
1 + an n

2 + . + ak n
k   
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General solution of linear homogeneous recurrence relations with constant 

coefficients: 

r .. , we have t distinct rootsrk − c1
k−1 − . − ck = 0   

he root multiply by m , m , ..., m  timest 1  2   t  

..m1 + m2 + . + mt = k  

a n .. n )r a n .. n )ran = ( 1,0 + a1,1 + . + a1,m −11

m −11 n
1 + ( 2,0 + a2,1 + . + a2,m −12

m −12 n
2

 

 
+  

        ... (a n .. n )r+  +  t,0 + at,1 + . + at,m −1t

m −1t
t
n  

here a are 1   and 0w i,j ≤ i ≤ t ≤ j ≤ mj − 1  

( n )ran = ∑
t

i=0
∑
m −1t

j=0
ai,j

j
t
n  

Nonhomogeneous linear recurrence relation with constant coefficients 

 c a  c a  . . . c  a  (n)an =  1 n−1 +  2 n−2 +  +  k n−k + F  

is a particular solution of the nonhomogeneous linear recurrence relation witha }{ n
(p)  

constant coefficients 

is a solution of the associated homogeneous recurrence relationa }{ n
(h)  

an = an
(p) + an

(h)  

Format of F(n): (n) (b n n .. n )sF =  t
t + bt−1

t−1 + . + b1 + b0
n  

When s is not a root of the characteristic equation of the associated linear 

homogeneous recurrence relation, there is a particular solution of the form 

p n n .. n )san
(p) = ( t

t + pt−1
t−1 + . + p1 + p0

n  

When s is a root of this characteristic equation and its multiplicity is m, there is a 

particular solution of the form 

(p n n .. n )san
(p) = nm t

t + pt−1
t−1 + . + p1 + p0

n  
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6.1 The Basics of Counting 

 is set of waysAk  

There are , n is number of ways, k is number of task, n , ..., nn1  2   k  

[Product rule] A  × A  × ... × A | |A | |A | ... |A | n ...n| 1 2 k =  1 2 k = n1 2 k   

[Sum rule] A  ∪ A  ∪ ... ∪ A | |A | A | .. A | n ..  | 1 2 k =  1 + | 2 + . + | k =  1 + n2 + . + nk  

[Subtraction Rule]   A  ∪ A  | A | A | − | A  ∩ A  |  | 1 2 = | 1 + | 2 1 2  

[Division Rule]  If finite set A is the union of n pairwise disjoint subsets each with d 

elements, then n = |A| / d 

Counting problems can solved by tree diagrams 

[Pigeonhole principle] 

Assume that 

pigeons: n + 1 objects are placed into 

pigeonholes: n boxes 

At least one box contains two or more objects 

6.3 Permutations and Combinations 

(n, r)  P  =  n!
(n−r)!  

(n, r)  C  =  n!
(n−r)!r!  
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6.4 Binomial Coefficients and Identities 
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