Skip to main content

Integrating Factors 積分因子

若果 M(x,y)dx+N(x,y)dy=0M(x, y) dx + N(x, y) dy = 0

MyNx\frac{\partial M}{\partial y} \not= \frac{\partial N}{\partial x}

(Not Exact 不恰當,因此無法用恰當方程式的方法去解)

而存在一個非零函數 μ(x,y)\mu(x, y) ,令

(μM)dx+(μN)dy=0(\mu M) dx + (\mu N) dy = 0

為 Exact 恰當, μ(x,y)\mu(x, y) 則稱為 Integrating Factors 積分因子

有至少以下六種方法求 μ(x,y)\mu(x, y) 積分因子:

方法一(常用)

1N(MyNx)\frac{1}{N} (\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})

只包括 x ,則

μ=e1N(MyNx)dx\mu = e^{\int \frac{1}{N} (\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}) dx}

1M(NxMy)\frac{1}{M} (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})

只包括 y ,則

μ=e1M(NxMy)dy\mu = e^{\int \frac{1}{M} (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) dy}

方法一的證明

由於 (μM)dx+(μN)dy=0(\mu M) dx + (\mu N) dy = 0 為恰當

y[μ(x,y)M(x,y)]=x[μ(x,y)N(x,y)]\frac{\partial}{\partial y} [\mu(x, y) M(x, y)] = \frac{\partial}{\partial x} [\mu(x, y) N(x, y)]

假設 μ(x,y)\mu(x, y) 只包括 x,即 μ(x)\mu(x) ,則

μ(x)x=dμ(x)dxμ(x)y=0\begin{align} \frac{\partial \mu(x)}{\partial x} &= \frac{d \mu(x)}{d x} \\ \frac{\partial \mu(x)}{\partial y} &= 0 \end{align}

上面的公式轉變為

y[μ(x)M(x,y)]=x[μ(x)N(x,y)]\frac{\partial}{\partial y} [\mu(x) M(x, y)] = \frac{\partial}{\partial x} [\mu(x) N(x, y)]

用 乘法法則 (Product Rule for Derivatives) 展開

μ(x)yM(x,y)+μ(x)M(x,y)y=μ(x)xN(x,y)+μ(x)N(x,y)x0+μ(x)M(x,y)y=dμ(x)dxN(x,y)+μ(x)N(x,y)xμ(x)M(x,y)yμ(x)N(x,y)x=dμ(x)dxN(x,y)μ(x)(M(x,y)yN(x,y)x)=dμ(x)dxN(x,y)1N(x,y)(M(x,y)yN(x,y)x)=1μ(x)dμ(x)dx1N(x,y)(M(x,y)yN(x,y)x)dx=1μ(x)dμ(x)1N(x,y)(M(x,y)yN(x,y)x)dx=1μ(x)dμ(x)1N(x,y)(M(x,y)yN(x,y)x)dx=lnμ(x)μ(x)=e1N(x,y)(M(x,y)yN(x,y)x)dx\begin{align} \frac{\mu(x)}{\partial y} M(x, y) + \mu(x) \frac{\partial M(x, y)}{\partial y} &= \frac{\partial \mu(x)}{\partial x} N(x, y) + \mu(x) \frac{\partial N(x, y)}{\partial x} \\ 0 + \mu(x) \frac{\partial M(x, y)}{\partial y} &= \frac{d \mu(x)}{d x} N(x, y) + \mu(x) \frac{\partial N(x, y)}{\partial x} \\ \mu(x) \frac{\partial M(x, y)}{\partial y} - \mu(x) \frac{\partial N(x, y)}{\partial x} &= \frac{d \mu(x)}{d x} N(x, y) \\ \mu(x) (\frac{\partial M(x, y)}{\partial y} - \frac{\partial N(x, y)}{\partial x}) &= \frac{d \mu(x)}{d x} N(x, y) \\ \frac{1}{N(x, y)} (\frac{\partial M(x, y)}{\partial y} - \frac{\partial N(x, y)}{\partial x}) &= \frac{1}{\mu(x)} \frac{d \mu(x)}{d x} \\ \frac{1}{N(x, y)} (\frac{\partial M(x, y)}{\partial y} - \frac{\partial N(x, y)}{\partial x}) dx &= \frac{1}{\mu(x)} d \mu(x) \\ \int \frac{1}{N(x, y)} (\frac{\partial M(x, y)}{\partial y} - \frac{\partial N(x, y)}{\partial x}) dx &= \int \frac{1}{\mu(x)} d \mu(x) \\ \int \frac{1}{N(x, y)} (\frac{\partial M(x, y)}{\partial y} - \frac{\partial N(x, y)}{\partial x}) dx &= \ln \mu(x) \\ \mu(x) &= e^{\int \frac{1}{N(x, y)} (\frac{\partial M(x, y)}{\partial y} - \frac{\partial N(x, y)}{\partial x}) dx} \\ \end{align}

同理

μ(y)=e1M(x,y)(N(x,y)xM(x,y)y)dy\mu(y) = e^{\int \frac{1}{M(x, y)} (\frac{\partial N(x, y)}{\partial x} - \frac{\partial M(x, y)}{\partial y}) dy}

例題 1:

(x2+y2+x)dx+xydy(x^2 + y^2 + x) dx + xy dy 的積分因子

My=2yNx=y1N(MyNx)=1xy(2yy)=1xyy=1xμ(x)=e1xdx=eln(x)=x\begin{align} \frac{\partial M}{\partial y} &= 2y \\ \frac{\partial N}{\partial x} &= y \\ \frac{1}{N} (\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} ) &= \frac{1}{xy} (2y - y) \\ &= \frac{1}{xy} y \\ &= \frac{1}{x} \\ \mu(x) &= e^{\int \frac{1}{x} dx} \\ &= e^{ln(x)} \\ &= x \end{align}

例題 2:

(y26xy)dx+(3xy6x2)dy(y^2 - 6xy) dx + (3xy - 6x^2) dy 的積分因子

My=2y6xNx=3y12x1M(NxMy)=3y12x2y+6xy26xy=y6xy(y6x)=1yμ(y)=e1ydx=eln(y)=y\begin{align} \frac{\partial M}{\partial y} &= 2y - 6x \\ \frac{\partial N}{\partial x} &= 3y - 12x \\ \frac{1}{M} (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} ) &= \frac{3y - 12x - 2y + 6x}{y^2 - 6xy} \\ &= \frac{y - 6x}{y (y - 6x)} \\ &= \frac{1}{y} \\ \mu(y) &= e^{\int \frac{1}{y} dx} \\ &= e^{ln(y)} \\ &= y \end{align}

方法二

M(x,y)dx+N(x,y)dy=0M(x, y) dx + N(x, y) dy = 0

為 Homogeneous Equations 齊次方程式

xM+yN0xM + yN \not = 0 時,則

μ=1xM+yN\mu = \frac{1}{xM + yN}

xM+yN=0xM + yN = 0 時,則

μ=1xy\mu = \frac{1}{xy}

方法三

MyNx=f(xy)(MxNy)\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = f(xy)(Mx - Ny)

μ=ef(xy)d(xy)\mu = e^{-\int f(xy) d(xy)}

方法四

M(x,y)dx+N(x,y)dy=0M(x, y) dx + N(x, y) dy = 0 可改寫為

yf(xy)dx+xg(xy)dyyf(xy) dx + x g(xy) dy

的形式,其中 f(xy)g(xy)f(xy) \not = g(xy)

μ=1xMyN\mu = \frac{1}{xM-yN}

方法五(這個不知道誰會用)

若微分方程式可改寫為

xayb(C1ydx+C2xdy)+xcyd(C3ydx+C4xdy)=0x^ay^b(C_1 y dx + C_2 x dy) + x^c y^d (C_3 y dx + C_4 x dy) = 0

其中 C1C4C2C3C_1 C_4 \not = C_2 C_3

μ\mu 會是 xmynx^m y^n 的形式 (只是形式,不是解)

方法六

查表