Skip to main content

Separable 可分離, Homogeneous 齊次, Exact 恰當 Equation

Content 內容:

  • Separable Equation 可分離方程式 / 分離變數法

  • Homogeneous Equations 齊次方程式

  • Exact Equations 恰當方程式

Order and Degree 階與次

Order 階是指 dydx\frac{dy}{dx} 的最高階數, dydx\frac{dy}{dx} 是一階, d2ydx2\frac{d^2y}{dx^2} 是二階

Degree 次是指 dydx\frac{dy}{dx} 最高的冪數, dydx\frac{dy}{dx} 是一次, dydx2\frac{dy}{dx}^2 是二次

Solution form 解答形式

依型態可分為:

  • Expilcit Solution 顯解

  • Implicit Solution 隱解

依意義可分為:

  • General Solution 通解

  • Particular Solution 特解

  • Singular Solution 奇異解

Separable Equation 可分離方程式 / 分離變數法

把變數分離到方程的兩邊

F(x,y,y)=0F(x, y, y') = 0 g(y)dy=f(x)dxg(y)dy=f(x)dx\begin{align} g(y) dy &= f(x) dx \\ \int g(y)dy &= \int f(x)dx \end{align}

例題 1:

xdydx=5yxdy=5ydx1ydy=5xdxdyy=5dxxlny=5lnx+Cy=Cx5\begin{align} x \frac{dy}{dx} &= 5y \\ x dy &= 5 y dx \\ \frac{1}{y} dy &= \frac{5}{x} dx \\ \int \frac{dy}{y} &= 5 \int \frac{dx}{x} \\ ln y &= 5 ln x + C \\ y &= Cx^5 \end{align}

例題 2:

y=aydyy=adxlny=ax+Cy=Ceax\begin{align} y' &= ay \\ \frac{dy}{y} &= a dx \\ ln y &= ax + C \\ y &= Ce^{ax} \end{align}

例題 3:

y+ay+b=0, where a0dy=(ay+b)dxdyy+ba=adxln(y+ba)=ax+Cy=Ceaxba\begin{align} y' + ay + b &= 0 \text{, where } a \not= 0 \\ dy &= -(ay + b) dx \\ \frac{dy}{y + \frac{b}{a}} &= -a dx \\ ln(y + \frac{b}{a}) &= -a x + C \\ y &= Ce^{-ax} - \frac{b}{a} \end{align}

Homogeneous Equations 齊次方程式

f(λx,λy)=λmf(x,y)f(\lambda x, \lambda y) = \lambda^m f(x, y) ,則稱 f(x,y)f(x, y)mm 次齊次

若一階微分方程式可以以下形式表示:

M(x,y)dx+N(x,y)dy=0M(x, y) dx + N(x, y) dy = 0

當中 M(x,y)M(x, y) N(x,y)N(x, y) 為同次齊次,則稱為 Homogeneous Differential Equaltions 齊次微分方程式

例題 1:

Prove f(x,y)=x3+10x2y+3xy2+y3f(x, y) = x^3 + 10 x^2 y + 3xy^2 + y^3 is homogeneous of degree 3 三次齊次函數

f(λx,λy)=(λx)3+10(λx)2(λy)+3(λx)(λy)2+(λy)3=λ3x3+10λ3x2y+3λ3xy2+λ3y3=λ3f(x,y)\begin{align} &f(\lambda x, \lambda y) \\ &= (\lambda x)^3 + 10(\lambda x)^2(\lambda y) + 3 (\lambda x) (\lambda y)^2 + (\lambda y)^3 \\ &= \lambda^3 x^3 + 10 \lambda^3 x^2 y + 3 \lambda^3 x y^2 + \lambda^3 y^3 \\ &= \lambda^3 f(x, y) \end{align}

若果微分方程不能以 可分離方程式 / 分離變數法 求解

但本身為齊次微分方程式,即 M(x,y)dx+N(x,y)dy=0M(x, y) dx + N(x, y) dy = 0

這種形式的方程可經過代換成為可分離,做法如下:

dxdx 前面的函數 M(x,y)M(x, y) 較簡單, Let x=vy,dx=vdy+ydv\text{Let } x = vy, dx = v dy + y dv

dydy 前面的函數 N(x,y)N(x, y) 較簡單, Let y=ux,dy=udx+xdu\text{Let } y = ux, dy = u dx + x du

例題 2:

求解 ydx=(2x+y)dyy dx = (2x + y) dy

Let x=vy,dx=vdy+ydv,v=xy\text{Let }x = vy, dx = vdy + y dv, v = \frac{x}{y} y(vdy+ydv)=(2vy+y)dyvdy+ydv=(2v+1)dyydv=(v+1)dydvv+1=dyyln(v+1)=lny+Cv+1=Cyxy+1=Cyy+x=Cy2\begin{align} y(vdy + y dv) &= (2vy + y) dy \\ vdy + ydv &= (2v+1) dy \\ y dv &= (v + 1) dy \\ \frac{dv}{v + 1} &= \frac{dy}{y} \\ ln(v + 1) &= ln y + C\\ v + 1 &= Cy\\ \frac{x}{y} + 1 &= Cy\\ y + x &= C y^2 \end{align}

Exact Equations 恰當方程式

對於 M(x,y)dx+N(x,y)dy=0M(x, y) dx + N(x, y) dy = 0

My=Nx\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} ,稱為 Exact 恰當

則存在 Potential Function 位勢函數 F(x,y)F(x, y),當中:

F=Fxdx+Fydy\partial F = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy Fx=MFy=NF=Mdx+k(y)F=Ndy+k(x)Fy=y[Mdx+k(y)]Fx=x[Ndy+k(x)]N=y[Mdx+k(y)]M=x[Ndy+k(x)]\begin{align} \frac{\partial F}{\partial x} &= M & \frac{\partial F}{\partial y} &= N \\ F &= \int M dx + k(y) & F &= \int N dy + k(x) \\ \frac{\partial F}{\partial y} &= \frac{\partial}{\partial y} [\int M dx + k(y)] & \frac{\partial F}{\partial x} &= \frac{\partial}{\partial x} [\int N dy + k(x)] \\ N &= \frac{\partial}{\partial y}[ \int M dx + k(y)] & M &= \frac{\partial}{\partial x}[ \int N dy + k(x)] \end{align}

F=CF = C 是微分方程式的解

例題 1:

xy+y+4=0xy' + y + 4 = 0

改寫為 M(x,y)dx+N(x,y)dy=0M(x, y) dx + N(x, y) dy = 0 的形式

(y+4)dx+xdy=0M(x,y)=y+4N(x,y)=x\begin{align} (y + 4) dx + x dy &= 0 \\ M(x, y) &= y + 4 \\ N(x, y) &= x \end{align} Since My=1=Nx,It is exact\text{Since } \frac{\partial M}{\partial y} = 1 = \frac{\partial N}{\partial x}, \text{It is exact}

Method 1 (Use M(x,y)M(x, y) first, then N(x,y)N(x, y) ):

F(x,y)=M(x,y)dx+k(y)=(y+4)dx+k(y)=x(y+4)+k(y)Since Fy=Ny[x(y+4)+k(y)]=xx+k(y)=xk(y)=0k(y)=CF(x,y)=x(y+4)+CSolution is F(x,y)=Cx(y+4)=C\begin{align} F(x, y) &= \int M(x, y) dx + k(y) \\ &= \int (y + 4) dx + k(y) \\ &= x (y + 4) + k(y)\\ \text{Since } \frac{\partial F}{\partial y} &= N \\ \frac{\partial }{\partial y} [x(y + 4) + k(y)] &= x\\ x + k'(y) &= x \\ k'(y) &= 0 \\ k(y) &= C \\ F(x, y) &= x(y + 4) + C\\ \text{Solution is } F(x, y) &= C \\ x(y + 4) &= C \end{align}

Method 2 (Use N(x,y)N(x, y) first, then M(x,y)M(x, y) ):

F(x,y)=N(x,y)dy+k(x)=xdy+k(x)=xy+k(x)Since Fx=Mx[xy+k(x)]=y+4y+k(x)=y+4k(x)=4k(x)=4x+CF(x,y)=xy+4x+CSolution is F(x,y)=Cxy+4x=Cx(y+4)=C\begin{align} F(x, y) &= \int N(x, y) dy + k(x) \\ &= \int x dy + k(x) \\ &= x y + k(x)\\ \text{Since } \frac{\partial F}{\partial x} &= M \\ \frac{\partial }{\partial x} [x y + k(x)] &= y + 4\\ y + k'(x) &= y + 4 \\ k'(x) &= 4 \\ k(x) &= 4x + C \\ F(x, y) &= xy + 4x + C\\ \text{Solution is } F(x, y) &= C \\ xy + 4x &= C \\ x(y + 4) &= C \end{align}

有另一個比較方便的公式

axM(x,y)dx+byN(a,y)dy=C\int^{x}_{a} M(x, y) dx + \int^{y}_{b} N(a, y) dy = C

注意是 N(a,y)N(a, y) 而不是 N(x,y)N(x, y)

以下公式推導:

F(x,y)=axM(x,y)dx+k(y)Fy=y[axM(x,y)dx]+k(y)Fy=NN(x,y)=axM(x,y)ydx+k(y)My=NxN(x,y)=axN(x,y)xdx+k(y)N(x,y)=N(x,y)N(a,y)+k(y)k(y)=N(a,y)k(y)=byN(a,y)dy\begin{align} F(x, y) &= \int^{x}_{a} M(x, y) dx + k(y) \\ \frac{\partial F}{\partial y} &= \frac{\partial}{\partial y} [ \int^{x}_{a} M(x, y) dx ] + k'(y) \\ \frac{\partial F}{\partial y} &= N \\ N(x, y) &= \int^{x}_{a} \frac{\partial M(x, y)}{\partial y} dx + k'(y) \\ \frac{\partial M}{\partial y} &= \frac{\partial N}{\partial x} \\ N(x, y) &= \int^{x}_{a} \frac{\partial N(x, y)}{\partial x} dx + k'(y) \\ N(x, y) &= N(x, y) - N(a, y) + k'(y) \\ k'(y) &= N(a, y) \\ k(y) &= \int^y_b N(a, y) dy \end{align} F(x,y)=axM(x,y)dx+k(y)=axM(x,y)dx+byN(a,y)dy\begin{align} F(x, y) &= \int^{x}_{a} M(x, y) dx + k(y) \\ &= \int^{x}_{a} M(x, y) dx + \int^y_b N(a, y) dy \end{align}

例題 2:

(2x3+3y)dx+(3x+y1)dy=0(2x^3+3y)dx+(3x+y-1)dy=0

My=3=Nx,It is exact\frac{\partial M}{\partial y} = 3 = \frac{\partial N}{\partial x}, \text{It is exact} axM(x,y)dx+byN(a,y)dy=Cax(2x3+3y)dx+by(3a+y1)dy=C[12x4+3xy]ax+[3ay+12y2y]by=C[12x4+3xy12a43ay] + [3ay+12y2y3ab12b2+b]=C12x4+3xy+12y2y=Cx4+6xy+y22y=C\begin{align} \int^{x}_{a} M(x, y) dx + \int^{y}_{b} N(a, y) dy &= C \\ \int^{x}_{a} (2x^3 + 3y) dx + \int^{y}_{b} (3a + y - 1) dy &= C \\ \left[ \frac{1}{2} x^4 + 3xy \right]^x_a + \left[ 3ay + \frac{1}{2}y^2 - y \right]^y_b &= C \\ [\frac{1}{2} x^4 + 3xy - \frac{1}{2}a^4 - 3ay] \ + \ & \\ [3ay + \frac{1}{2} y^2 - y - 3ab - \frac{1}{2} b^2 + b] &= C \\ \frac{1}{2} x^4 + 3xy + \frac{1}{2} y^2 - y &= C \\ x^4 + 6xy + y^2 - 2y &= C \end{align}

例題 3:

解上面做過的 xy+y+4=0xy' + y + 4 = 0

(y+4)dx+xdy=0(y + 4) dx + x dy = 0 My=1=Nx,It is exact\frac{\partial M}{\partial y} = 1 = \frac{\partial N}{\partial x}, \text{It is exact} ax(y+4)dx+byady=C[x(y+4)]ax+[ay]by=Cx(y+4)=C\begin{align} \int^x_a (y + 4) dx + \int^y_b a dy &= C \\ \left[ x(y+4) \right]^x_a + \left[ ay \right]^y_b &= C \\ x(y+4) &= C \end{align}