Skip to main content

Problem 1.8 Product of Multivariate Gaussian Distributions

Show that the product of two dd-dimensional multivariate Gaussians distributions, N(xa,A)\mathcal{N}(x|a, A) and N(xb,B)\mathcal{N}(x|b, B), is a scaled multivariate Gaussian,

N(xa,A)N(xb,B)=ZN(xc,C),(1.23)\mathcal{N}(x|a, A)\mathcal{N}(x|b, B) = Z\mathcal{N}(x|c, C), \tag{1.23}

where

c=C(A1a+B1b),(1.24)c = C(A^{-1}a + B^{-1}b), \tag{1.24} C=(A1+B1)1,(1.25)C = (A^{-1} + B^{-1})^{-1}, \tag{1.25} Z=1(2π)d2A+B12e12(ab)T(A+B)1(ab)=N(ab,A+B).(1.26)Z = \frac{1}{(2\pi)^{\frac{d}{2}}|A+B|^{\frac{1}{2}}}e^{-\frac{1}{2}(a-b)^T(A+B)^{-1}(a-b)} = \mathcal{N}(a|b, A+B). \tag{1.26}

Hint: after expanding the exponent term, apply the result from Problem 1.10 and (1.35).