Skip to main content

Problem 2.6 MLE for a multivariate Gaussian

In this problem you will derive the ML estimate for a multivariate Gaussian. Given samples {x1,,xN}\{x_1, \cdots, x_N\},

(b) Derive the ML estimate of the covariance Σ\Sigma.

You may find the following vector and matrix derivatives helpful:

  • xaTx=a\frac{\partial}{\partial x} a^T x = a, for vectors x,aRdx, a \in \mathbb{R}^d.
  • xxTAx=Ax+ATx\frac{\partial}{\partial x} x^T A x = Ax + A^T x, for vector xRdx \in \mathbb{R}^d and matrix ARd×dA \in \mathbb{R}^{d \times d}.
  • XlogX=XT\frac{\partial}{\partial X} \log |X| = X^{-T}, for a square matrix XX.
  • Xtr(AX1)=Xtr(X1A)=(XTATXT)\frac{\partial}{\partial X} \text{tr}(AX^{-1}) = \frac{\partial}{\partial X} \text{tr}(X^{-1}A) = -(X^{-T} A^T X^{-T}), for matrices A,XA, X.

Hint: remember Σ\Sigma is symmetric!