-
Substitute Γ and Σ:
Start with the general MAP formula from (a)/(b):
θ^MAP=(Γ−1+ΦΣ−1ΦT)−1ΦΣ−1y
Substitute Γ=αI and Σ=σ2I:
θ^MAP=((αI)−1+Φ(σ2I)−1ΦT)−1Φ(σ2I)−1y
Scalars come out of the inverse (α−1=1/α):
θ^MAP=(α1I+σ21ΦΦT)−1σ21Φy
-
Simplify:
Factor out σ21 from the inverse term. Recall (kA)−1=k1A−1, so A−1=k1(kA)−1? No, let's just multiply the equation by identity.
Let A=α1I+σ21ΦΦT. We want A−1.
A=σ21(ασ2I+ΦΦT).
A−1=σ2(ασ2I+ΦΦT)−1.
Substitute back:
θ^MAP=[σ2(ασ2I+ΦΦT)−1]σ21Φy
The σ2 and σ21 cancel out:
θ^MAP=(ΦΦT+ασ2I)−1Φy
-
Identify λ:
Setting λ=ασ2, we get:
θ^MAP=(ΦΦT+λI)−1Φy
Since variances σ2 and α are positive, λ≥0.