Skip to main content

Answer

Step-by-step Answer

  1. Expand the Squared Term: Let θ~=θ+θ\tilde{\theta} = \theta^+ - \theta^-. The objective is: J=12(yΦTθ~)T(yΦTθ~)+λ(θi++θi)J = \frac{1}{2} (y - \Phi^T \tilde{\theta})^T (y - \Phi^T \tilde{\theta}) + \lambda \sum (\theta_i^+ + \theta_i^-) J=12(yTy2yTΦTθ~+θ~TΦΦTθ~)+λ(θi++θi)J = \frac{1}{2} (y^T y - 2 y^T \Phi^T \tilde{\theta} + \tilde{\theta}^T \Phi \Phi^T \tilde{\theta}) + \lambda \sum (\theta_i^+ + \theta_i^-) We can ignore the constant term 12yTy\frac{1}{2} y^T y for minimization.

  2. Substitute x\mathbf{x}: Let x=[θ+θ]\mathbf{x} = \begin{bmatrix} \theta^+ \\ \theta^- \end{bmatrix}. Then θ~=θ+θ=[II]x\tilde{\theta} = \theta^+ - \theta^- = \begin{bmatrix} I & -I \end{bmatrix} \mathbf{x}.

  3. Quadratic Part (xTHx\mathbf{x}^T \mathbf{H} \mathbf{x}): The quadratic term is 12θ~T(ΦΦT)θ~\frac{1}{2} \tilde{\theta}^T (\Phi \Phi^T) \tilde{\theta}. Substitute θ~\tilde{\theta}: 12xT[II](ΦΦT)[II]x\frac{1}{2} \mathbf{x}^T \begin{bmatrix} I \\ -I \end{bmatrix} (\Phi \Phi^T) \begin{bmatrix} I & -I \end{bmatrix} \mathbf{x} =12xT[ΦΦTΦΦTΦΦTΦΦT]x= \frac{1}{2} \mathbf{x}^T \begin{bmatrix} \Phi \Phi^T & -\Phi \Phi^T \\ -\Phi \Phi^T & \Phi \Phi^T \end{bmatrix} \mathbf{x} Thus, H=[ΦΦTΦΦTΦΦTΦΦT]\mathbf{H} = \begin{bmatrix} \Phi \Phi^T & -\Phi \Phi^T \\ -\Phi \Phi^T & \Phi \Phi^T \end{bmatrix}.

  4. Linear Part (fTx\mathbf{f}^T \mathbf{x}): We have two contributions: from the regression cross-term and the regularization.

    • Regression: 12(2yTΦTθ~)=(Φy)Tθ~-\frac{1}{2} (2 y^T \Phi^T \tilde{\theta}) = -(\Phi y)^T \tilde{\theta}. Substitute θ~=θ+θ\tilde{\theta} = \theta^+ - \theta^-: (Φy)Tθ++(Φy)Tθ-(\Phi y)^T \theta^+ + (\Phi y)^T \theta^-. In terms of x\mathbf{x}: [(Φy)T(Φy)T]x\begin{bmatrix} -(\Phi y)^T & (\Phi y)^T \end{bmatrix} \mathbf{x}. So this contributes [ΦyΦy]\begin{bmatrix} -\Phi y \\ \Phi y \end{bmatrix} to f\mathbf{f}.
    • Regularization: λ(θi++θi)=λ1Tx\lambda \sum (\theta_i^+ + \theta_i^-) = \lambda \mathbf{1}^T \mathbf{x}. This contributes λ1\lambda \mathbf{1} to f\mathbf{f}.

    Summing them up: f=λ1+[ΦyΦy]=λ1[ΦyΦy]\mathbf{f} = \lambda \mathbf{1} + \begin{bmatrix} -\Phi y \\ \Phi y \end{bmatrix} = \lambda \mathbf{1} - \begin{bmatrix} \Phi y \\ -\Phi y \end{bmatrix}

  5. Constraints: θ+0\theta^+ \ge 0 and θ0\theta^- \ge 0 imply x0\mathbf{x} \ge 0.