-
Expand the Squared Term:
Let θ~=θ+−θ−. The objective is:
J=21(y−ΦTθ~)T(y−ΦTθ~)+λ∑(θi++θi−)
J=21(yTy−2yTΦTθ~+θ~TΦΦTθ~)+λ∑(θi++θi−)
We can ignore the constant term 21yTy for minimization.
-
Substitute x:
Let x=[θ+θ−].
Then θ~=θ+−θ−=[I−I]x.
-
Quadratic Part (xTHx):
The quadratic term is 21θ~T(ΦΦT)θ~.
Substitute θ~:
21xT[I−I](ΦΦT)[I−I]x
=21xT[ΦΦT−ΦΦT−ΦΦTΦΦT]x
Thus, H=[ΦΦT−ΦΦT−ΦΦTΦΦT].
-
Linear Part (fTx):
We have two contributions: from the regression cross-term and the regularization.
- Regression: −21(2yTΦTθ~)=−(Φy)Tθ~.
Substitute θ~=θ+−θ−:
−(Φy)Tθ++(Φy)Tθ−.
In terms of x: [−(Φy)T(Φy)T]x.
So this contributes [−ΦyΦy] to f.
- Regularization: λ∑(θi++θi−)=λ1Tx.
This contributes λ1 to f.
Summing them up:
f=λ1+[−ΦyΦy]=λ1−[Φy−Φy]
-
Constraints:
θ+≥0 and θ−≥0 imply x≥0.