Skip to main content

Question

(c) Finally, define x=[θ+θ]\mathbf{x} = \begin{bmatrix} \theta^+ \\ \theta^- \end{bmatrix}. Show that (3.63) can be written in the standard form of a quadratic program,

minx12xTHx+fTx(3.64)\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{f}^T \mathbf{x} \tag{3.64} s.t. x0.\text{s.t. } \mathbf{x} \ge 0.

where

H=[ΦΦTΦΦTΦΦTΦΦT],f=λ1[ΦyΦy],(3.65)\mathbf{H} = \begin{bmatrix} \Phi \Phi^T & -\Phi \Phi^T \\ -\Phi \Phi^T & \Phi \Phi^T \end{bmatrix}, \quad \mathbf{f} = \lambda \mathbf{1} - \begin{bmatrix} \Phi y \\ -\Phi y \end{bmatrix}, \tag{3.65}

and 1\mathbf{1} is the vector of ones. Now we can use a standard QP solver!

Note: there are many customized algorithms for estimating the weights of LASSO, but this is perhaps the easiest to implement since we can use quadprog in MATLAB.